0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i43[0] →* i43[1])∧(i43[0] + 1 > 0 && i12[0] >= i43[0] + 1 →* TRUE)∧(i12[0] →* i12[1]))
(1) -> (0), if ((i43[1] + 1 →* i43[0])∧(i12[1] →* i12[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i43[0] →* i43[1])∧(i43[0] + 1 > 0 && i12[0] >= i43[0] + 1 →* TRUE)∧(i12[0] →* i12[1]))
(1) -> (0), if ((i43[1] + 1 →* i43[0])∧(i12[1] →* i12[0]))
(1) (i43[0]=i43[1]∧&&(>(+(i43[0], 1), 0), >=(i12[0], +(i43[0], 1)))=TRUE∧i12[0]=i12[1] ⇒ LOAD426(i12[0], i43[0])≥NonInfC∧LOAD426(i12[0], i43[0])≥COND_LOAD426(&&(>(+(i43[0], 1), 0), >=(i12[0], +(i43[0], 1))), i12[0], i43[0])∧(UIncreasing(COND_LOAD426(&&(>(+(i43[0], 1), 0), >=(i12[0], +(i43[0], 1))), i12[0], i43[0])), ≥))
(2) (>(+(i43[0], 1), 0)=TRUE∧>=(i12[0], +(i43[0], 1))=TRUE ⇒ LOAD426(i12[0], i43[0])≥NonInfC∧LOAD426(i12[0], i43[0])≥COND_LOAD426(&&(>(+(i43[0], 1), 0), >=(i12[0], +(i43[0], 1))), i12[0], i43[0])∧(UIncreasing(COND_LOAD426(&&(>(+(i43[0], 1), 0), >=(i12[0], +(i43[0], 1))), i12[0], i43[0])), ≥))
(3) (i43[0] ≥ 0∧i12[0] + [-1] + [-1]i43[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD426(&&(>(+(i43[0], 1), 0), >=(i12[0], +(i43[0], 1))), i12[0], i43[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]i43[0] + [(2)bni_10]i12[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(4) (i43[0] ≥ 0∧i12[0] + [-1] + [-1]i43[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD426(&&(>(+(i43[0], 1), 0), >=(i12[0], +(i43[0], 1))), i12[0], i43[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]i43[0] + [(2)bni_10]i12[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(5) (i43[0] ≥ 0∧i12[0] + [-1] + [-1]i43[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD426(&&(>(+(i43[0], 1), 0), >=(i12[0], +(i43[0], 1))), i12[0], i43[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]i43[0] + [(2)bni_10]i12[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(6) (i43[0] ≥ 0∧i12[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD426(&&(>(+(i43[0], 1), 0), >=(i12[0], +(i43[0], 1))), i12[0], i43[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]i43[0] + [(2)bni_10]i12[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(7) (COND_LOAD426(TRUE, i12[1], i43[1])≥NonInfC∧COND_LOAD426(TRUE, i12[1], i43[1])≥LOAD426(i12[1], +(i43[1], 1))∧(UIncreasing(LOAD426(i12[1], +(i43[1], 1))), ≥))
(8) ((UIncreasing(LOAD426(i12[1], +(i43[1], 1))), ≥)∧[1 + (-1)bso_13] ≥ 0)
(9) ((UIncreasing(LOAD426(i12[1], +(i43[1], 1))), ≥)∧[1 + (-1)bso_13] ≥ 0)
(10) ((UIncreasing(LOAD426(i12[1], +(i43[1], 1))), ≥)∧[1 + (-1)bso_13] ≥ 0)
(11) ((UIncreasing(LOAD426(i12[1], +(i43[1], 1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD426(x1, x2)) = [-1] + [-1]x2 + [2]x1
POL(COND_LOAD426(x1, x2, x3)) = [-1] + [-1]x3 + [2]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(0) = 0
POL(>=(x1, x2)) = [-1]
COND_LOAD426(TRUE, i12[1], i43[1]) → LOAD426(i12[1], +(i43[1], 1))
LOAD426(i12[0], i43[0]) → COND_LOAD426(&&(>(+(i43[0], 1), 0), >=(i12[0], +(i43[0], 1))), i12[0], i43[0])
LOAD426(i12[0], i43[0]) → COND_LOAD426(&&(>(+(i43[0], 1), 0), >=(i12[0], +(i43[0], 1))), i12[0], i43[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer